
Exploring NoSQL Databases:
Challenges and Opportunities

Sindhuja Madabushi

CS 5614 Spring 2024

● NoSQL databases have prominence in the era of Generative AI.

● They are designed to handle large volumes of unstructured or

semi-structured data.

● Focus on how NoSQL databases address the unique needs of

handling graph data.

NoSql Databases

NoSql Databases (Cont.)

● Document and Key-Value models - quick data retrieval.

● Graph models - complex relationships.

● Choose the data model based on the specific requirements of

your application.

https://phoenixnap.com/kb/graph-database

https://phoenixnap.com/kb/graph-database

There are many DBs out there

Graph DBs are designed to store and

query graph data

● Nodes: Represent entities or

objects in the data.

● Edges: Represent the

relationships between nodes.

Credit: https://zhanggroup.org/PEPPI/

https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/
https://rajshah001.medium.com/graphs-and-real-life-application-28759b77b833
https://www.freecodecamp.org/news/data-structures-101-graphs-a-visual-introduction-for-beginners-6d88f36ec768/
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://rajshah001.medium.com/graphs-and-real-life-application-28759b77b833

https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/
https://rajshah001.medium.com/graphs-and-real-life-application-28759b77b833
https://www.freecodecamp.org/news/data-structures-101-graphs-a-visual-introduction-for-beginners-6d88f36ec768/
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://rajshah001.medium.com/graphs-and-real-life-application-28759b77b833

https://neo4j.com/docs/getting-started/

https://neo4j.com/docs/getting-started/

Graph Data Sources

● LDBC Datagen

● SNAP

https://ldbcouncil.org/post/datagen-data-generation-for-the-social-network-benchmark/
https://snap.stanford.edu/data/index.html

https://ldbcouncil.org/post/datagen-data-generation-for-the-social-network-benchmark/
https://snap.stanford.edu/data/index.html

Cypher Query Language
Create nodes:
CREATE (p:Person {name: 'Alice', age: 30})
CREATE (p:Person {name: 'Bob', age: 35})

Create relationship between the nodes:
MATCH (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'})
CREATE (a)-[:KNOWS]->(b)

Select all pairs of people who know each other
MATCH (p1:Person)-[r:KNOWS]->(p2:Person) RETURN p1, r, p2

This creates a KNOWS relationship with a property since indicating the year since Alice knows Bob:
MATCH (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'})
CREATE (a)-[r:KNOWS {since: 2021}]->(b) RETURN r

Cypher Query Language - Queries
betweenness centrality:

 CALL algo.betweenness.stream('Person','KNOWS',direction:'out')

 YIELD nodeId, centrality

 MATCH (user:Person) WHERE id(user) = nodeId

 RETURN user.id AS user,centrality

 ORDER BY centrality DESC;

Community detection:

 CALL algo.louvain.stream('Person', 'KNOWS',)

 YIELD nodeId, community

 RETURN algo.getNodeById(nodeId).id AS user, community

 ORDER BY community;

Working With Neo4j

Cypher Query Language - Stored Procedures
Stored procedure call: CALL algo.procedure.cosine()

public class FullTextIndex

{

private static final Map<String,String> FULL_TEXT =

stringMap(IndexManager.PROVIDER, "lucene", "type",

"fulltext");

@Context

public GraphDatabaseService db;

@Context

public Log log;

@Procedure(value = "similarity.procedure")

@Description("Execute lucene query in the given index,

return found

nodes")

public Stream<SearchHit> search()

{

Stream<SearchHit> s1 = null, s2;

Boolean s1Empty= true;

String queryString="";

List<String> a= new ArrayList<>()

String[] emb = {

 "0.0797428,0.182545,0.0576887,0.0351693",

 "-0.0777048,0.386052,0.584654,3.87082",

}

Cypher Query Language - Stored Procedures

queryString="WITH [";

for(int i=0;i<emb.length-1;i++){

queryString+="{item: "+i+", weights: ["+emb[i]+"]}, ";

}

queryString+="{item: "+(emb.length-1)+", weights:

["+emb[emb.length-1]+"]}] as data CALL

algo.similarity.cosine.stream(data) YIELD item1, item2,

similarity RETURN item1, item2, similarity;";

s1=db.execute(queryString).stream().map(it->new

SearchHit(it.values().stream().map(it2->it2.toString()).collect(C

ollectors.joining(";"))));

return s1;

}

public static class SearchHit

{

// This records contain a single field named 'nodeId'

public String similarity;

public SearchHit(String similarity)

{

this.similarity = similarity;

}

Graph Processing Benchmarks

https://www.timlrx.com/blog/benchmark-of-popular-graph-network-packages-v2

https://www.timlrx.com/blog/benchmark-of-popular-graph-network-packages-v2

Why Graph processing Techniques?

Real World Graphs

https://www.pulsarplatform.com/blog/2014/detecting-communities-using-social-network-analysis/
https://towardsdatascience.com/influential-communities-in-social-network-simplified-fe5050dbe5a4

https://www.pulsarplatform.com/blog/2014/detecting-communities-using-social-network-analysis/
https://towardsdatascience.com/influential-communities-in-social-network-simplified-fe5050dbe5a4

Other Graph DBs

There are 60+ graph databases:

● Amazon Neptune

● Neo4j

● OrientDB

● ArangoDB

● Elastic Search

● TitanDB

Processing capabilities - Neo4j

Cypher Query Language: Highly expressive and efficient for graph queries.

Graph Algorithms: Supports complex operations like pathfinding, centrality, and community
detection.

Real-Time Processing: Enables quick data retrieval and updates for dynamic graph
structures.

Indexing and Caching: Enhances performance for read-heavy workloads.

Data Import and Integration: Efficiently handles data from various sources and formats.

Can be integrated with big data with frameworks like Spark and Hadoop

Future directions

GNNs/GraphML + Generative AI

Graph DBs and Generative AI

Latest News

https://towardsdatascience.com/langchain-has-added-cypher-search-cb9d821120d5

https://towardsdatascience.com/langchain-has-added-cypher-search-cb9d821120d5

Thank You.

Questions?

